959 research outputs found

    Intrinsic Volumes of Polyhedral Cones: A combinatorial perspective

    Get PDF
    The theory of intrinsic volumes of convex cones has recently found striking applications in areas such as convex optimization and compressive sensing. This article provides a self-contained account of the combinatorial theory of intrinsic volumes for polyhedral cones. Direct derivations of the General Steiner formula, the conic analogues of the Brianchon-Gram-Euler and the Gauss-Bonnet relations, and the Principal Kinematic Formula are given. In addition, a connection between the characteristic polynomial of a hyperplane arrangement and the intrinsic volumes of the regions of the arrangement, due to Klivans and Swartz, is generalized and some applications are presented.Comment: Survey, 23 page

    Gordon's inequality and condition numbers in conic optimization

    Full text link
    The probabilistic analysis of condition numbers has traditionally been approached from different angles; one is based on Smale's program in complexity theory and features integral geometry, while the other is motivated by geometric functional analysis and makes use of the theory of Gaussian processes. In this note we explore connections between the two approaches in the context of the biconic homogeneous feasiblity problem and the condition numbers motivated by conic optimization theory. Key tools in the analysis are Slepian's and Gordon's comparision inequalities for Gaussian processes, interpreted as monotonicity properties of moment functionals, and their interplay with ideas from conic integral geometry

    Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps

    Get PDF
    We prove lower bounds of order nlog⁑nn\log n for both the problem to multiply polynomials of degree nn, and to divide polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem to multiply a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix. In addition, we extend these lower bounds for linear and bilinear maps to a model of circuits that allows a restricted number of unbounded scalar multiplications.Comment: 19 page

    Effective Condition Number Bounds for Convex Regularization

    Get PDF
    We derive bounds relating Renegar's condition number to quantities that govern the statistical performance of convex regularization in settings that include the β„“1\ell_1-analysis setting. Using results from conic integral geometry, we show that the bounds can be made to depend only on a random projection, or restriction, of the analysis operator to a lower dimensional space, and can still be effective if these operators are ill-conditioned. As an application, we get new bounds for the undersampling phase transition of composite convex regularizers. Key tools in the analysis are Slepian's inequality and the kinematic formula from integral geometry.Comment: 17 pages, 4 figures . arXiv admin note: text overlap with arXiv:1408.301

    ζ–°εŽδ½œε“ : ζ–°εŽδ½œε“δΈ€θ¦§

    Get PDF
    We show that recent results on randomized dimension reduction schemes that exploit structural properties of data can be applied in the context of persistent homology. In the spirit of compressed sensing, the dimension reduction is determined by the Gaussian width of a structure associated to the data set, rather than its size, and such a reduction can be computed efficiently. We further relate the Gaussian width to the doubling dimension of a finite metric space, which appears in the study of the complexity of other methods for approximating persistent homology. We can therefore literally replace the ambient dimension by an intrinsic notion of dimension related to the structure of the data.Comment: 20 page

    On the Error in Phase Transition Computations for Compressed Sensing

    Get PDF
    Evaluating the statistical dimension is a common tool to determine the asymptotic phase transition in compressed sensing problems with Gaussian ensemble. Unfortunately, the exact evaluation of the statistical dimension is very difficult and it has become standard to replace it with an upper-bound. To ensure that this technique is suitable, [1] has introduced an upper-bound on the gap between the statistical dimension and its approximation. In this work, we first show that the error bound in [1] in some low-dimensional models such as total variation and β„“1\ell_1 analysis minimization becomes poorly large. Next, we develop a new error bound which significantly improves the estimation gap compared to [1]. In particular, unlike the bound in [1] that is not applicable to settings with overcomplete dictionaries, our bound exhibits a decaying behavior in such cases
    • …
    corecore